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In  a backward boundary layer the fluid has, in the mathematical model, been 
flowing along a solid wall through an infinite distance. The co-ordinate distance x 
along the boundary is measured upstream, and the velocity U of the flow outside 
the boundary layer is taken as negative. The main application is to flow in 
converging passages. 

The existence of similar solutions is considered, with emphasis on the correct 
asymptotic behaviour for large values of the stretched co-ordinate normal to the 
wall. This emphasis is shown to be necessary in considering backward boundary 
layers. 

For two-dimensional flow in converging passages the requirement that a 
boundary layer should be possible for vanishingly small viscosity with a potential 
core flow is shown to lead directly to Mamel’s spirals as the shape of the boundary 
streamlines. 

Flow in axisymmetric converging passages is considered. For flow in a cone 
there is no limit as the viscosity tends to zero, and no potential core flow with 
a boundary layer is possible. The nature of a solution of the Navier-Stokes 
equations for laminar flow is considered. 

1. The boundary-layer equation, and the condition ‘at infinity’ 
For a fluid of constant density p and constant kinematic viscosity V, the 

equation for the first approximation to two-dimensional laminar flow in a 

boundary layer is au au au a2u 
u-+v- = u-+v-. 

ax ay ax ay2 

Here x is distance measured along the bounding solid surface from some origin, 
y is distance normal to the surface, and u and v are the components of the fluid 
velocity in the directions of x and y increasing. U is usually described as the 
velocity in the main stream just outside the boundary layer. 

From the equation of continuity there is a stream function $(x, y) such that 

( 1 )  

The boundary conditions at impermeable walls for no slip, which are the usual 

(3 )  

conditions, mag be taken as 
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The boundary condition ‘at infinity’ is sometimes stated to be uI U -+ 1 as y + 00. 

However, it  is here necessary to be precise about this boundary condition. This 
condition is here stated as 

Yn’(u/U-l)+0 as Y-too (4) 

for any real N, where Y = y p .  ( 5 )  
The co-ordinate y does not tend to infinity in the boundary layer. A stretched 

co-ordinate Y must be used in the boundary layer, and the limit taken is for 
variations in v for non-zero y ,  with v tending to zero, and not for variations in y .  
For non-zero y ,  Y -+ co as v + 0. As v + 0 the boundary layer becomes a vortex 
sheet at the boundary, and any non-zero y is eventually in the inviscid flow 
outside the boundary layer. Certainly the value of U is taken for small y ,  in fact 
for vanishingly small y ,  but y is taken vanishingly small after v+O, and the 
matching may be roughly said to be made on the other side of the vortex sheet 
from that on which the solid boundary lies. In  elementary boundary-layer theory, 
which is all that will be used in this paper, this makes no difference to the actual 
calculations, but the point is of importance in the further developments which 
will be mentioned later in connexion with the second remark about the boundary 
condition at infinity. 

Also (u /U  - 1) must tend to zero faster than any negative power of Y; the error 
will, in fact, be exponentially small for large Y .  The physical reason is that, if this 
were not so, there would be extra vorticity in the main flow, over and above any 
produced before the stream arrives a t  the surface considered, which would not 
be exponentially small. But this extra vorticity is produced only a t  the wall; it 
then diffuses and is convected with the stream, and in a continuum the result of 
these processes must be to make this extra vorticity exponentially small in Y 
when Y is large. This emendation does enter even in elementary boundary-layer 
theory, and i t  has been known for a long time that in some cases such a condition 
is needed to make the solution unique. Hartree discovered this, for example, in 
calculating the solutions for U = cxm, when m is negative and 0 > m > - 0-0904. 
(See, for example, the reference in Modern Developments in Fluid Dynamics, 
vol. 1, p. 141.) 

To explain why the condition is necessary mathematically, consider how 
boundary-layer theory would be extended to find asymptotic approximations 
for small v to a solution of the Navier-Stokes equations to a higher order (Kaplun 
1954; Lagerstrom & Cole 1955). To expIain the procedure, it  will here suffice to 
consider the two-dimensional flow of a fluid of constant properties along a plane 
surface. Outside the boundary layer, the ‘natural’ co-ordinates x and y would 
be used, and derivatives with respect to these variables would be considered 
bounded when v+O, in the usual way. Inside the boundary layer, derivatives 
with respect to y would become infinite as v+O, and the stretched variable Y 
would be used, derivatives with respect to Y being considered as bounded. 
Since u = v-4 a@/aY, the stream function must also be of order v4 in the boundary 
layer. Expansions in powers of v* might first be tried, with 

(6) 

(7) 

$‘outside = go(x, Y) + v4gl(x, Y )  + vg2(z, Y )  + 
$inside = v’[fO(x, y )  fv*fi(x, y ,  + vf2(x, y, + .*-I .  
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It is known that expansions of these forms are not sufficiently general, but the 
simplest possible case will serve to illustrate the matter under discussion. 

It is postulated that expansions such as (6) and (7) are asymptotic expansions 
in the sense of Poincard for v tending to zero. 

The expansions (6) and (7)  must be completely matched for small values of y 
but large values of Y .  It is unnecessary here to enter into details. It is sufficient 
to remark that the asymptotic expansions of fo,fi, f2, . . . for large Y provide the 
values of gl(x, 0), g2(x, 0), g,(x, 0), . . ., respectively, and so provide boundary con- 
ditions for the determination of the g(x, y ) .  This last statement was made on the 
assumption that no negative powers of Y occur in the asymptotic expansions of 
fo, fit . . . . If there is a term in Y-N for positive N ,  this would be a term in 
and it would have to be taken into account in the matching process when terms 
of order vBN in @'outside are considered, and gN(x, y )  would have to behave like 
y-Nfor small y. Now if no disturbances are introduced upstream, it is not difficult 
to see that g,, g2, . . . are all harmonic if go is harmonic, or if the vorticity, - V2go, 
in the original inviscid stream is constant. There is certainly no harmonic function 
which becomes infinite along any finite portion of the x-axis. (A simple and 
rigorous proof was once pointed out to me by Prof. Shiffer.) I do not know if 
proofs of non-existence have been published for more general cases. In  particular, 
I do not know if a proof of non-existence has been published which would cover 
the case of axisymmetric flow, to which a boundary condition such as (4) will also 
be applied. It seemed worthwhile to point out one way in which a looser condition 
could lead to a mathematical impossibility. Henceforward, a boundary condi- 
tion such as (4) will be postulated. For the two-dimensional case, only equations 
(1)-(5) will be needed. 

2. Similar solutions 
Consider again the known results for similar solutions for two-dimensional 

flow. Suppose that, if at each section x of the boundary layer we scale y 
correctly, the curves of ulU become the same, i.e. inside the boundary layer 

Y uO = a function of 7, where 7 = -g(x), 
U(X) V +  

for some g. This requires that the stream function inside the boundary layer 
should be given by 

(9) 

(10) 

U = c x m  or cekx or ce-kz, (11) 

where c ,  m, and Ic are constants, and x is distance along the boundary from any 
arbitrary point of it (Goldstein 1939). If c is positive and x is measured down- 
stream, we have the usual forward boundary layers. With U = cxm (c > 0) and 

(12) 

U 
- = F'(7). 
U 

and then 

It is easy to see that this kind of solution is possible if 

g(x) = (U/X)+ = CfXgm-l), 
3-2 
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the equation for F is the well-known equation of Falkner & Skan (1930), 

F”‘ + &(m + 1) FF“ - m P 2  + m = 0, (13) 

solutions of which, for m + 1 > 0, were tabulated by Hartree (1937) after the 
transformation 

T’ = [*(m+ 1)]47, f (Y)  = [&m+ 1)]4F(7). (14) 

(Note that the definition of Y here, and from now on, is different from that in 
equation (5).) The equation for f is 

f ” + f l f ” - P ( f ’ 2 -  1)  = 0, (15) 

with 

If m+ 1 < 0, we put 

Y = [ -&(m+l)]47,  f ( Y )  = [ -4(m+l)]Qy7),  (17) 

and then 

with the same p. Primes on f denote derivatives with respect to Y ,  and on 
F with respect to 7. 

Of course (15) and (18) are reducible to the same equation if imaginary 
variables are allowed. However, we are here particularly concerned with the 
existence of real solutions in terms of a real independent variable, so it seems 
advisable not to use imaginary variables. Also (18) becomes (15) if the sign off 
is changed, but then the last boundary condition in ( 2 5 )  below is altered. For 
our present purposes, it  is immaterial whether f or -f be used as dependent 
variable. 

Similar remarks apply to other pairs of equations in the paper, for example 
(13) and (28), (19) and (29). 

If m + 1 = 0, the equation for F(7)  is 

f IN -8” + P ( f ’ 2 -  1) = 0, (18) 

P”+F~Z- 1 = 0. 

With U = cekx (c  > 0, k > 0) and 

g ( x )  = (#c)*e&kr, 

F”+FF”-3(F‘2-1)  = 0, 

and with U = ceckX ( c  > 0, Ic > 0) and 

g ( x )  = (@c)*e-+kx, 

F‘”- FF“+Z(F“- 1) = 0. 

The boundary conditions are 

F(0)  = 0, F’(0) = 0, 7iV(F’-l)+O as 7+m, 

or f(0) = 0, f’(0) = 0, r”i(f’- 1)+0  as Y-+co, 

for any real N .  
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Equation (31 )  is just equation (15 )  with /3 = 2 (m-tco) ,  and equation (23 )  is 
just equation (18 )  with /3 = 2 (m+ -a). 

3. Backward boundary layers 
It was stated in 3 2 that similar solutions are possible if U = C X ~  or c ekx or 

c e-kx, and c was taken as positive in 5 2. There are also similar solutions if U is 
given by one of these formulae with c negative, or if 

where c,  1 and m are constants, so long as this expression is real. Then g may 
u = C(Z & x)m,  

g = IC/+(Z * xp-11 be taken to be given by 

if this is real and the equation for F that takes the place of (13 )  is 
F”’ k sgn c@(m + 1 )  FF” - m F 2  + m} = 0. 

Attention will here be restricted to the cases when 

U = -cxm or -cekx or -ce--kx, (26 )  
with c > 0, k > 0. Thus U is here negative and x is measured upstream. The 
main application is to flow in converging passages, where, in the mathematical 
models, the fluid enters at infinity with infinitely slow velocity, and moves in a 
converging passage towards the intersection of the walls, which is taken as origin. 
In  such cases, in the mathematical models, viscosity has had a sensible effect on 
the fluid in the boundary layer through an infinite distance. The name ‘back- 
ward boundary layers’ will here be used for such cases. 

With U = - cxm, since all quantities must be kept real g(x) is taken as 

g(x) = ( I Ul/X)* = C+X*(m-1), ( 2 7 )  

P ” ’ - $ ( m +  l ) F F ” + m B ’ 2 - m  = 0. (28 )  

and the equation for P(7) is 

When m + 1 > 0,  I’ andf( P) are defined as before by (14 ) ,  and the result is that 
f satisfies equation (18 ) ,  which was the equation it satisfied for U > 0, m + 1 < 0. 
Thusfsatisfies (18 )  if (m+ 1 )  U < 0. 

Similarly, if m + 1 < 0, I’ and f( Y )  are defined as before by (17), and then 
f satisfies equation (15 ) ,  which was the equation it satisfied for U > 0, m + 1 > 0. 
Thus f satisfies (15) if ( m  + 1 )  U > 0. 

If m + 1 = 0,  the equation for F(7) is 

F” ’ -F ’z+  1 = 0. (29 )  

With U = - c ekx ( c  > 0, k > 0) and g(x) given by (ZO), F satisfies equation ( 2 3 ) ,  
whereas with U = -ce--lc;c and g(x)  given by (22 ) ,  F satisfies equation (21) .  
Equations (31 )  and ( 2 3 )  are, as previously noted, the limiting cases of (15 )  and 
(18) when /3 = 2. 

For backward boundary layers the boundary conditions (24) and (35 )  still 
apply. The differential equations with which we are concerned for similar solu- 
tions are then (15 ) ,  (18) ,  (19 )  and (29) ,  with the boundary conditions (24) or (25) .  
The question at issue is whether solutions exist. 

/3 is given by (16) .  Note that 0 < /3 < 2 form > 0, that /3 < 0 for - 1 < m < 0, 
and that /3 > 2 f o r m +  1 < 0. 
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4. Existence and uniqueness 
We are very much concerned with the nature of the asymptotic behaviour of 

f as Y 3 co, or of F as 7 --f 00. The last of each of the sets of boundary conditions 
(24) and (25) must be stressed. 

In  a rough, non-rigorous manner, possible non-existence of solutions may be 
discussed as follows. If there is a solution, since f'( Y )  = 1 + o( Y-N) as Y --f co, 
f (  Y )  - Y + b, where b is a constant. Put 

Y+b = 5, f = C+g(C). (30) 

Then g(6) = o(<-~) as <-+co; in fact g(<) will be exponentially small as <+co. 
Consider equation (18). It becomes 

(31) 9"' - Cgff + 2pg' = gg" -$gQ, 

where primes now denote derivatives with respect to 5. For large < the right- 
hand side will be exponentially small compared with the left-hand side, and the 
equation becomes approximately 

gtt1 - [gff + 2pg' = 0. ( 32) 

This is a second-order linear equation for 9'. Two independent solutions are 
exp ( $C2) Dzg( 5) and Pg+l exp ( &c2) D-zg-l( ic), where D,( 5) is Weber's parabolic 
cylinder function (Whittaker & Watson 1920, sect. 16.5 et seq.). Thus the asymp- 
totic expansions for large 6 of two independent solutions of (32) are 

and 
2p - 1) ( - 2p - 2 )  

_____ + ...I, 
2 p  (34) 

respectively. Neither of these satisfies the condition gf = 0(5-~) for every N ;  we 
need a negative exponential. We conclude that there are no admissible solutions 
of (18). 

With a less stringent boundary condition at infinity, if algebraic error terms- 
negative powers of Y-had been allowed, the expansion in (33) would have been 
allowable for negative p.  For forward boundary layers, (18) applies with 
m+ 1 < 0,  and therefore with /3 > 2,  so this is irrelevant. But for backward 
boundary layers, (18) applies with m + 1 > 0, so with the less stringent boundary 
condition it might have been thought that an admissible solution could exist 
for - 1 < m < 0, for which p < 0. With the necessary and more stringent 
boundary condition, we now see that there is no solution for a backward boundary 
layer with m+ 1 > 0. 

If we consider equation (15) in the same way, we find the following two 
asymptotic expansions for large 6 of two independent solutions for 9': 

(35) 

(36) and 
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The former of these may give an admissible solution for any p. But whereas it 
appears safe to conclude that there is no admissible solution if this rough method 
so indicates, it  is not safe to conclude that an admissible solution exists if this 
rough method shows that it may. For one thing, a solution may exist which is 
not real, and therefore not admissible. Again considering the matter in a loose 
manner, when we compute a solution we may integrate forwards from the origin 
( Y = 0)  with one undetermined constant, and backwards from infinity with two 
undetermined constants, and make f ,  f ’ andf” continuous at some value of Y .  
There would be three equations for three unknown constants, but the solution 
may not be real. In  fact, Hartree discovered, numerically, that (15) has a real 
solution for p 2 Po = -0.1988; for ,8 < Po, there are no real solutions; and for 
values of /3 just greater than Po, f”(0) is of order (p-po)*. Also, for m = - 1/3, 
,b = - 1, a method used by Mills (1938) may be used to find explicitly the solution 
with the given boundary conditions in terms of Weber’s parabolic cylinder 
functions, and the solution is not real. 

Equations (19) and (29) may be solved explicitly. The solution of (29) with the 
given boundary conditions is the known solution for the boundary layer in 
converging flow between non-parallel plane walls, with U = - c / x .  It is found 
that there is no solution of (19) satisfying the given boundary conditions. 

Equations (19) and (29) may also be discussed by the approximate method 
used above for equations ( 15) and (18). When (19) is discussed in this way, the 
approximate equation for gf is 

g” + 2g‘ = 0, (37) 

so there is no non-zero solution for g’ which -+O as c-+co. 
When (29) is discussed in this way, the approximate equation for g‘ is 

g”1-2g’ = 0, ( 38) 

and for the admissible solution g‘ - const. ec24c. The exact solution of (29) 
does indeed exhibit this behaviour. 

The above rough procedure was used by Goldstein (1939) to ‘show’ the non- 
existence of solutions of (18) with p = 2-i.e. of (23). The non-existence was 
rigorously and neatly proved by Hardy (1939), by a method which may be 
extended to the case of any positive /?. 

Weyl(19.13) proved the existence of solutions of (15) for /3 > 0. Coppel (1960) 
reconsidered this question, and proved that, for all non-negative f(0) and f ‘(O), 
there is a solution for which f ” is one-signed, and i f f”  must be one-signed the 
solution is unique and the asymptotic behaviour is correctly given by the rough 
procedure above. 

Through the courtesy of Prof. James Serrin, of the Department of Mathematics 
of the University of Minnesota, I have recently seen a copy of his lecture notes 
on Mathematical Aspects of Boundary Layer Theory. These contain a derivation 
of equations (15) and (18) for similar solutions for negative U ,  and an interesting 
and full discussion of work on the existence and uniqueness of solutions of 
equations (15) and (18) under the conditions f(0) = f’(0) = 0, f’(co) = 1, 
0 < f ’( P) < 1. A discussion of the asymptotic behaviour off’ as Y +a in the 
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various cases was not included. Additional references are also given in these 
lecture notes, especially the references to the work of Iglisch (1953, 1954) on the 
existence and uniqueness of solutions of (15) with p > 0. 

The known results when U cc xm may now be summarized as follows. 
For forward boundary layers a real solution exists when m > - 0.0904 (equa- 

tion (15) with - 0.1988 < /3 < 2 ) ;  and with the stringent boundary condition at 
infinity and f " ( 0 )  positive (i.e. with positive skin-friction) the solution is unique 
(and there is no back flow). For m = -0.0904 (p  = -0.1988); f"(0) = 0. For 
m Q - 1 (equations (18) and (19))' no solutions exist. For - 1 < m < -0.0904 
(equation (15) with ,8 < - 0*1988), no real solutions exist; any solutions which 
exist must be complex. 

For backward boundary layers there are no solutions for m > - 1 (equation 
(18)). For m < - 1 (equation (15) with p > 2 and equation (29)) a real solution 
exists, which is unique with f " (  0 )  positive (positive skin-friction and no back 

Although no use is made here of solutions for whichf"( 0 )  is negative, it  may be 
mentioned that real solutions have been found to exist for forward boundary 
layers for -0-0904 < m < 0 (Stewartson 1954) and for backward boundary 
layers with m = - 1 (Ackerberg 1962). 

Similar solutions are known to be useful because they provide standards of 
comparison for approximate methods. In  what follows their use is different; if 
the whole solution is not a similar solution, the results from considering similar 
solutions provide a guide on the way an expansion should start. The results will 
be used in this way, for example, to consider converging flow in a cone. 

flow). 

' 

5. Applications to two-dimensional flow in converging passages 
For flow in a converging passage, since m must be < - 1, there must be a 

singularity where the walls would meet, a t  the origin. The least singularity 
possible for a flow which would allow a boundary layer to exist and bring the slip 
at the wall to zero is when m = - 1. If a solution without a singularity is impos- 
sible, and no external agency is interfering a t  the position of the singularity, it  is 
now postulated that the solution with the smallest allowable singularity will be 
the best description of the physical facts. Thus, if we now write s for distance 
along a streamline from the intersection of the two bounding streamlines, and 
q for the resultant velocity, and look for an irrotational flow outside the boundary 
layers, the flows in contracting passages for which there wiIl, for vanishingly 
small 11, be such potential flows are those for which 

4 = l/s (39) 

along the bounding streamlines (on the assumption that a higher singularity is 
not forced in the theory by considerations of continuity, as i t  may be if the 
bounding streamlines intersect at a cusp). The shape of the streamlines may be 
determined from this condition; this was done by Hadley Smith (unpublished), 
and they are, as expected, Hamel's equiangular spirals. A long time ago Hamel 
(1916) sought the viscous flows for which the streamlines coincide with the 
streamlines of an inviscid potential flow without the actual viscous motion itself 
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being irrotational; he found the streamlines to be equiangular spirals. The flow 
between non-parallel straight walls is a particular case. 

Thus we may use boundary-layer theory to ask the right question about 
inviscid potential flows, and find Hamel’s answer without ever considering the 
full Navier-Stokes equations at all. 

In forward boundary layers the errors in the asymptotic expansions and the 
vorticity in the outer flow are multiples of exp ( - y y 2 / v ) ,  where y is a constant. 
For backward boundary layers, with rn = - 1, for which the fluid in the boundary 
layer has been flowing along a solid wall over an infinite distance, the error and the 
vorticity are of order exp ( - J2y/v&).  So they are still exponentially small, but 
not, after this long contact with a wall, as small as in a forward boundary layer. 
(For flow between non-parallel walls or equiangular spirals, this result is clear 
from boundary-layer solutions which have been known for a long time, but has 
never been commented on.) 

6. Axisymmetric flow in converging passages. Converging flow in 
a cone 

Backward axisymmetric boundary layers, and the flow in axisymmetric con- 
verging passages, may be discussed in the same way, but the results may easily 
be obtained from the two-dimensional results by using Mangler’s transformation. 
Let r,, be the distance of a point on a bounding streamline from the axis of sym- 
metry. For the axisymmetric flow, the equation of continuity for a fluid of 
constant density and viscosity is written 

a a 
ax aY 
- ( r , ~ )  +- (rev) = 0 

in the boundary layer, and a stream function 9 is defined for which 

Use primes for a two-dimensional flow, for which 

r,, is a given function of x. The boundary-layer equations in an axisymmetric 
flow are transformed into the equations of a two-dimensional boundary layer if 
we keep p,  v,  p ,  and U the same, and put 

Here 1 is an arbitrary fixed length, inserted merely to preserve dimensions. The 
resulting connexions between velocity components are 

The boundary conditions are taken to be the same as before, although, as 
previously mentioned, the necessity that ( u / U -  1 )  should be o( Y’-N) as Y ‘ 4 c o  
has not been proved mathematically. 
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If now we again write s for distance along a streamline from the intersection 
of the bounding streamlines, and q for the resultant velocity, the condition in 
axisymmetric contracting passages which replaces (39) is seen to be 

along the bounding streamlines. The shape of the streamlines that correspond 
dynamically to plane walls or symmetrically placed spiral walls in two dimen- 
sions has not yet been accurately found from this condition, and it is not yet 
certain that there is an accurate (as distinct from an approximate) solution. 

If we consider converging flow in a right circular cone, the generators are 
straight, ro = xsina, where a is the semi-vertical angle of the cone, and 

For a simple sink flow a boundary layer will be impossible. For 

(47) 
1 1 

X2 
U cc - corresponds with U cc a, 

for which m = - +, p = - 4. This is a case where the asymptotic error inf’ behaves 
like c-8, or Y-8, and this algebraic error is taken to be inadmissible. In  fact, for 

(48) 
a circular cone 1 1 

U cc corresponds with U cc - 
X x3’ 

and not 1/x2 as for a sink flow. (48) tells us how to start an expansion for small 
distances from the vertex of the cone. It turns out that there is no longer 
an irrotational flow outside a boundary layer, but (48) does tells us how the 
velocity just outside the boundary layer must vary with x very near the apex. 

It has long been known (Harrison 1920) that purely radial flow cannot be 
a solution of the full Navier-Stokes equations for converging flow in a cone. 
However, a radial flow is a solution of Stokes’s equations for creeping flow. 

Consider the possibility of finding an axisymmetric solution of the full Navier- 
Stokes equations for converging flow in a cone, with a given volume flux %A, 
and with purely radial flow a t  an infinitely great distance from the vertex, where 
the velocity will be infinitesimally small. 

From dimensional reasoning, or from the equations of motion in spherical 
polar co-ordinates R, 8, where R is distance from the vertex and 8 the angle with 
the axis of symmetry, together with the boundary conditions and equality of the 
volume flux to BnA, it  is easy to see that, for a given semi-vertical angle a, the 
solution for Stokes’s stream function P must be of the form 

P vR 2 =f(& O), where E = -. A (49) 

Note that, in two dimensions, if A is the volume flux per unit breadth, it has 
one less dimension in length, and the corresponding result is 

-==P - e ,  
A (1) ) 

with r absent, and this gives purely radial flow. 
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< is the inverse of a local Reynolds number which is very small when VR is 
very large-i.e. for large viscosities or at large distances, where the velocities 
are small. For large values of 5 there is an expansion of the functionf(5,19) in (49) 
which begins with the solution, fo(p), of Stokes’s equations for creeping flow: 

The large Reynolds numbers occur for small values of 6, near the apex of the cone. 
It is here that we expect an outer or core flow, with a boundary layer at the wall 
to bring the slip down to zero. In  order that a boundary layer may exist, the 
first term in the expansion for small < must give a velocity proportional to R-3. 
Hence the expansion off(<, 0) for the outer or core flow near the apex must begin 
with a term in 6-l: 

( 5 2 )  
1 f = g Cgo(P) + 6Sl (P)  + * **I. 

The corresponding expansion in the boundary layer (not just the first boundary- 
layer approximation) will be of the form 

where 
cos e - cos a 

c r =  (53) 

Note that here, very near the apex, the leading terms in U and therefore also 
in u in the boundary layer are O( v-1). The elementary treatment of the boundary 
layer is therefore somewhat altered. For two-dimensional flow along a plane 
surface if a/ax is taken of order unity, or for axisymmetric flow along a right 
conical surface if ajaR is of order unity, the boundary-layer thickness is 
O(v*/l Ulh). Here, then, the stretching factor in the boundary layer will be v-1 
instead of the usual v-h. This explains the appearance of v in the denominator 
in r when the value of < is substituted from (49). It follows from an examination 
of the equations in spherical polar co-ordinates that the form for r in (53) is a 
suitable form for a ‘similarity’ variable, and r comes out to be a function of 6 
and 8, as it should. Alternatively, the result that r must be a function of < and 0 
may be used from the beginning (Ackerberg 1962). In  addition to the order of 
the boundary-layer thickness, 6, note also that w is O(U6),  ap/ax (or ap/aR) is 
O( U2), and ap/ay (or R-l ap/aO) is O( U2S), so here w is O( I), ap/aR is O ( V - ~ ) ,  and 
~ - 1 a p l a e  is O(V-1). 

The assumed expansions (52)  and (53) are substituted in the full equation 
for $, in the first case with 6 and p as variables, and in the second case with 
< and r as variables, and like powers of 5 on the two sides of the equation are 
equated. The matching is done as r + co in (53) (g-+ 0 and a! - 8 not zero) and 
p+cosa in (52). 

The volume flux 2n-A is a constant, independent of 6, and can come only from 
the second term in ( 5 2 ) ,  the contribution to the flux from every other term being 
zero. In  particular, the flux from the leading term must be zero, so we expect the 
radial flow to be outwards in part of a section very near the apex, and inwards 
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in other parts of the same section; in other words, we expect, very near the apex, 
where 6-l is sufficiently large, a vortex region of closed streamlines. 

The first approximation, &-lq,,(p), to the stream function for the core flow is 
not independent of v ;  as v + 0,  there is no limit. This is not the standard case of 
a region of axisymmetric vortex flow, and we cannot deduce that the vorticity 
should be proportional to the distance from the axis of symmetry; clearly i t  
is not. 

The suggested expansions have been studied and the calculations carried 
further by R. C. Ackerberg (1962) in his Harvard Ph.D. thesis (see also Ackerberg 
1965). Unknown constants occur in ( 5 2 )  and (53 )  which, as often happens, can 
be found only by joining to the flow upstream. Logarithms have not yet been 
found necessary in (52) or (53 ) ,  and i t  is not yet known if they will be necessary. 
Here the unknown constants and logarithms have not appeared simultaneously 
as they often do. 

The suggested phenomenon will be difficult (if not impossible) to see experi- 
mentally; otherwise i t  would have been noted previously. Swirl must be absent. 
Surface tension effects must not be allowed, and certainly bubbles entering the 
opening must be avoided. The whole phenomenon takes place very near the apex, 
and i t  will be necessary to have a very small opening. There is a stagnation point 
on the axis of the cone at, say, R = R,, and R, must be large enough to allow the 
phenomenon to be seen; however, with this value of R, 6-l must be quite large, 
and this demands a small value of u/A. So a small viscosity is required, and a 
large flux is needed even though the opening must be very small.. It is also 
important that in the vortical region near the apex R should be large enough for 
the actual ambient pressure near the hole (which will occur instead of the theo- 
retical singularity at the vertex) not to disrupt the phenomenon. The production 
of the vortex near the apex must be due to the action of viscosity on each portion 
of the fluid over a sufficiently long time and therefore over a sufficiently long 
distance. In  the mathematical theory the flow enters radially at a very large 
distance, and, although this requirement is probably otherwise not very strin- 
gent, yet, as Dr Ackerberg pointed out to me, if the fluid is supposed to enter the 
cone without vorticity a large distance from the apex will be needed if viscosity 
is to produce the vortical motion near the apex. In  fact, whereas ( must be small 
at the stagnation point on the axis and in the vortical region, i t  must be large at 
entry. So v /A should be small, and R should be large at entry. Hence a long 
cone, or something equivalent, will be needed. Experiments have been made by 
M i  Binnie in Cambridge, England, but the phenomenon has not been observed 
in the experiments. 

This research was supported by the U.S. Office of Naval Research under 
Contract NONR-1866( 34). 
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